NI 43-101	Technical R	Report on the	Majorodam Gold Project	
Sipaliwini a	and Brokopo	ondo districts	of Suriname,	South America

Prepared for:

Reunion Gold Corporation and Greenheart Gold Inc.

Prepared by:

Ross Sherlock, Ph.D., P.Geo. Tantalus Geoscience Services Ltd. 161 Jeanine Street, Sudbury Ontario Canada

Effective Date: May 20, 2024

DATE AND SIGNATURE PAGE

Report date: June 10, 2024 Effective date: May 20, 2024

"Ross Sherlock" (signed and sealed)

Ross Sherlock, Ph.D., P. Geo.

Table of Contents

1	SUMMAR	Υ	1
	1.1	Introduction and Terms of Reference	1
	1.2	Property Description and Location	1
	1.3	Accessibility, Climate, Local Resources, Infrastructure & Physiography	2
	1.4	History	3
	1.5	Geology Setting and Mineralization	3
	1.6	Deposit Types	5
	1.7	Exploration	5
	1.8	Data Verification	5
	1.9	Adjacent Properties	5
	1.10	Interpretation and conclusions	6
	1.11	Recommendations	6
2	INTRODU	CTION AND TERMS OF REFERENCE	6
3	RELIANC	E ON OTHER EXPERTS	7
4	PROPER	TY DESCRIPTION AND LOCATION	7
	4.1	Mineral Right	9
	4.2	Option Agreement	11
	4.3	Transfer to Greenheart Gold	13
	4.4	Other factors	13
5	ACCESSI	BILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE &	
	PHYSIOG	RAPHY	13
6	HISTORY		15
7	GEOLOG	Y SETTING AND MINERALIZATION	18
8	DEPOSIT	TYPES	26
9	EXPLORA	ATION	27
10	DRILLING)	27
11	SAMPLE	PREPARATION, ANALYSES AND SECURITY	27
		RIFICATION	
		PROCESSING AND METALLURGICAL TESTING	
		RESOURCES ESTIMATE	
		T PROPERTIES	

24 OTHER RELEVANT DATA AND INFORMATION	. 30
25 INTERPRETATION AND CONCLUSIONS	. 30
26 RECOMMENDATIONS	. 31
27 REFERENCES	. 32

List of Figures

Figure 1. Majorodam Location Map.	8
Figure 2. Location map of the Majorodam Project in Suriname	9
Figure 3. Map Majorodam Project	10
Figure 4. Access through the Project trail network.	15
Figure 5. Airborne magnetics over concession with Stargold's hand-auger results	18
Figure 6. Geology of Suriname with the location of the Majorodam Project	20
Figure 7. Majorodam Project Geology	21
Figure 8. Quartz diorite which is interpreted to underly the eastern portion of the claim group	22
Figure 9. Mafic volcanic rocks	22
Figure 10. Duricrust outcroppings	24
Figure 11. Saprolite	24
Figure 12. Colluvium.	25
Figure 13. Section showing transported colluvium over saprolite	25
Figure 14. Artisanal mining activity	26
Figure 15. Several gold flakes in a panned concentrate	28
Figure 16. Mineral concessions surrounding the Majorodam Project	29

List of Tables

Table 1. Latitude and Longitude of all Majorodam Right of Exploitation corners	11
Table 2. Estimated Costs for Recommended Exploration Program	32

1 SUMMARY

1.1 Introduction and Terms of Reference

This technical report was prepared by Ross Sherlock, Ph.D. P.Geo. (referred to as the "author" or the "QP") of Tantalus Geoscience Services Limited at the request of Reunion Gold Corporation ("Reunion Gold"), a Canadian mineral exploration and development company listed on the TSX Venture Exchange ("TSX-V"), and Greenheart Gold Inc. ("Greenheart"), a newly created subsidiary of Reunion Gold, for the purposes described below.

The Majorodam Project (the "Majorodam Project" or the "Project") is an early-stage gold exploration project located in Suriname. Reunion Gold has entered into an option with an arm's length Surinamese company to acquire a 100% interest in the Majorodam Project.

On April 22, 2024, Reunion Gold and G Mining Ventures Corp. announced having entered into a definitive agreement to combine the two companies, setting the stage for the creation of a leading intermediate gold producer (the "Transaction"). As part of the Transaction, Reunion Gold and Greenheart will enter into the Contribution and Conveyance Agreement, pursuant to which Reunion Gold will assign and transfer to Greenheart Reunion Gold's interests in the Majorodam Project and certain mineral rights in Guyana as well as \$15 million in cash in consideration for the issuance by Greenheart to Reunion Gold of such number of fully paid and non-assessable Greenheart common shares as would result in the combine company holding, indirectly through Reunion Gold, approximately 19.9% of the outstanding Greenheart common shares immediately following completion of the Transaction and former shareholders of Reunion Gold owning approximately 80.1% of the outstanding shares of Greenheart. Pursuant to the Contribution and Conveyance Agreement, Greenheart will assume all obligations and liabilities under the option agreement.

This Technical Report was prepared in respect of the Transaction in accordance with National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("**NI 43-101**"). The information in this technical report is current as of May 20, 2024, unless otherwise noted.

1.2 **Property Description and Location**

The Majorodam Project is located in the Sipaliwini and Brokopondo districts of Suriname, approximately 120 kilometers ("**km**") south-southwest of Paramaribo, the capital of Suriname, and 11 km west of Lake Brokopondo. The property covers approximately 10,000 hectares ("**ha**"). The centre of the property is at ~ N004° 48.5' - W055° 20.8'.

May 20, 2024

The Majorodam Project comprises a right of exploitation issued to Stargold by Ministerial Order (GMD No. 223/23) on March 7, 2024 for a period of 10 years expiring on March 7, 2034. The right of exploitation covers an area of 10,000 ha.

Reunion Gold has entered into an option agreement on May 20, 2024 with Stargold Suriname N.V. ("Stargold"), the titleholder of the Majorodam right of exploitation. Pursuant to the option agreement, Stargold has granted to Reunion Gold an exclusive lease of the right of exploitation entitling Reunion Gold to conduct exploration activities during the option period. Reunion Gold also has the option to acquire a 100% undivided right, title, and interest in the Majorodam Project during the option period. The option is valid for an initial period of six (6) years and can be renewed for an additional period of (6) years subject to annual option payments and minimum exploration expenditures as outlined in section 5.

All permits are in place to conduct the recommended work program. In the authors opinion there is no significant factors and risks that may affect access, title, or the right or ability to perform work on the property.

1.3 Accessibility, Climate, Local Resources, Infrastructure & Physiography

The Majorodam Project is accessed primarily by the paved Afobakkaweg highway which runs roughly north south near the eastern boundary of the Project. Access to the Project from the highway and travel within the Project is by 4-wheel drive vehicle or ATV. The Project can be accessed year-round without interruption, although dirt roads can deteriorate significantly during the rainy seasons.

The Project is located at about latitude N004° 48.5' and has a tropical humid climate with two dry seasons, one from approximately May through July and the other from November to January. However, the onset and duration of the rainy season will vary from year to year. Throughout the year, the average daily temperature varies between 21° and 34°C.

The Project has no infrastructure outside of a rudimentary road network and artisanal miner's camp. The region's infrastructure is well developed with paved roads, communications and general services in various small towns. The capital city of Suriname, Paramaribo with a population of 240,000 people, can provide services, supplies, equipment and personnel to meet most if not all of the demands of an exploration program.

The Project geomorphology is variable with a central ridge striking roughly northeast-southwest reaching elevations of approximately 350 meters ("m") above sea level, Majorodam ridge. To the east of the central

ridge, the property is characterized by broad alluvial flats at approximately 90 m elevation. The Project is covered by thick vegetation and trees typical of the tropical region.

The project has sufficient surface rights for a potential mining operation, including associated infrastructure.

1.4 History

Informal small-scale artisanal activity is reported to have continued for at least 19 years (2005 to present) in various locations within the Project area. The first exploration in the area was by Golden Star Resources Ltd. ("Golden Star") in the 1990s who undertook a Bulk Leach Extractable Gold ("BLEG") stream sediment survey which highlighted anomalous drainages in the area. Guardian Minerals, a private US based exploration company undertook exploration activities in 2014-2015, including grab samples. In 2015, IAMGOLD's exploration company in Suriname, SurEx, undertook two field programs on the Project. The results of the above exploration programs are not available, except as summary diagrams.

In 2020, Stargold contracted an airborne magnetic / radiometric geophysical survey and collected handauger samples and a series of stream sediment panned concentrates. Hand-auger samples were analyzed by Fire Assay with an AAS finish while gold grain counts were completed on the stream sediment concentrates. In 2022, Stargold conducted a mapping and prospecting program, mostly to validate features identified in the airborne magnetic survey.

The geophysical data is available as images and the geochemical data available as a database; however, assay certificates were not available and QA/QC standards were not used to the best of the author's knowledge. The author has not been able to independently verify the historic exploration data.

1.5 Geology Setting and Mineralization

The Majorodam Project is situated within the Guiana Shield, at the northeastern edge of the Amazonian Craton. The Guiana Shield is over 900,000 km² and covers eastern Venezuela, Guyana, Suriname, French Guiana, the northern part of Brazil, and easternmost Colombia.

The Precambrian crystalline basement of Suriname consists of two high-grade metamorphic gneiss belts of Archean and Lower Proterozoic age, a likewise Lower Proterozoic volcanic-sedimentary greenstone belt, and a granitoid-volcanic complex.

The supracrustal rocks in Suriname are known as the Marowijne Group, and occupy large areas in NE and E Suriname, and some smaller areas in the north and northwest. They form part of a more or less

continuous, generally E-W to NW-SE striking greenstone belt along the northeastern margin of the Guiana Shield (Gibbs, 1980). The Marowijne Group is part of the Trans-Amazonian Province and comprises large Rhyacian (2.20-2.05 Ga) granite-greenstone belts, consisting of volcano-sedimentary rocks metamorphosed to greenschist facies, intrusive granitoids, and TTG (tonalite-trondhjemite-granodiorite) associated gneisses.

The geology of the Majorodam Project is characterized by a large tonalite-quartz diorite intrusion to the east and a series of mafic to ultramafic volcanic rocks to the west part of the Paramaca mafic volcanic suite, part of the Marowijne Group. The panels of volcanic rocks trend NE-SW. A series of interpreted faults strike predominately ENE-WSW based on geophysical interpretation.

The Majorodam is an early-stage exploration project with minor regional geochemical sampling, airborne magnetics and radiometrics, but otherwise subject to no other modern exploration work. The region is characterized by an elevated NE-SW trending Majorodam ridge (350 m elev.) with stream systems feeding off. These streams are the focus of alluvial mining with a gold source inferred to have been derived from bedrock source upstream.

Tropical weather in the project area is intense and complicated (Butt and Zeegers, 1992). As is the case for much of the tropical rain forest covered areas of South America, deep and overprinting weathering is characteristic of the geology of the Majorodam Project. Saprolite may extend to a depth of greater than 100 m. Supergene enrichment of gold and other minerals is also a characteristic of this type of terrain including the formation of laterite, often expressed as iron rich duricrust or true laterite. In areas of topographic relief, a transported colluvium is overlying the saprolite. This material is variably consolidated and consists of unsorted clasts of iron oxide, duricrust, indurated saprolite and pisoliths floating in a beige clayey matrix. Alluvial material, the focus of artisanal miners, occupies the stream beds. This material is unconsolidated sands to gravel, typically clean and well-sorted.

In-situ bedrock mineralization has not been identified on the project, however the geology, consisting of mafic volcanic rocks and felsic intrusions with structural complexities is prospective for orogenic style gold deposits as seen elsewhere in the Guiana Shield. The widespread occurrence of alluvial gold in active drainages suggests the presence of a bedrock source upslope from the alluvial workings. Similarly, the presence of gold in colluvium suggests that these workings are proximal to bedrock gold source as this material has limited transport distance. The proposed exploration program proposed is designed to identify the bedrock rock source of mineralization that may support a mining operation. This focus will be directed to identifying the source of the gold mineralization which has and is being mined by artisanal, alluvial and colluvium mining operations.

1.6 Deposit Types

The property is prospective for orogenic gold deposits and will be explored as such. Majorodam is located 19 km south of the Saramacca gold mine, in similar host rock, where gold is principally hosted within a series of north-northwest trending structures ranging between 2 and 40 metres in width and traced over 2.2 kilometres along strike. In addition to the shear/fault-hosted mineralization found at Saramacca, gold endowment in the western portion of the Marowijne greenstone belt is expressed in various styles of mineralization. All gold occurrences are structurally controlled and are interpreted to be variants on the orogenic gold class of deposits.

1.7 **Exploration**

Neither Reunion Gold Corporation or Greenheart Gold Inc have conducted any exploration on the property, outside of geologic site visits in 2020 and 2024.

1.8 <u>Data Verification</u>

The author Ross Sherlock, Ph.D., P.Geo., visited the property from May 6th through May 7th 2024. Sites of alluvial mining were visited, and gold was observed in panned concentrates. Due to dense vegetation, extensive cover and weathering, no mineralized outcrops were recognized and sampled. As described above, previous exploration activities and results could not be verified, although the author believes, based on conversations with Stargold, that the data were collected using the best practice available at the time.

Figure 16 It is the authors opinion, that the recognition of the alluvial gold workings and unverified data in previous exploration efforts supports the interpretation that a bedrock source for the alluvial gold may exist on the project area.

1.9 Adjacent Properties

The mineral concessions adjoining Majorodam have been or are still actively being explored and exploited by local small scale mining operations. Most of these operations are mining alluvial material, and rarely, *insitu* deeply weathered bedrock material.

The most significant properties proximal to the Project are those of Zijin Rosebel Gold Mines N.V. which includes the Rosebel and Saramacca gold mines. The mineral concessions associated with the gold mines are approximately 6 km north of Majorodam, covering an area of approximately 101,000 ha divided between two exploitation licences and nine exploration licences (IAMGOLD, 2022). Although not contiguous with

Majorodam, Rosebel and Saramacca are underlain by the same geological units and the style of mineralization are good analogies for what may be encountered at Majorodam. The most proximal of these deposits, Saramacca, is characterized by crack-seal veins in sub-parallel brittle-ductile fault zones, with the best mineralization associated with dolomite breccias and pyrite (SRK, 2017).

In 2018, IAMGOLD reported the Saramacca deposit as containing 1.76 Moz Au at a grade of 2.0 g/t Au in Indicated Resources including Proven and Probable Reserves of 1.54 Moz Au at a grade of 1.8 g/t Au (IAMGold, 2018). The QP has been unable to verify the information on the adjacent properties and the information provided herein is not necessarily indicative of the mineralization on the Majorodam Project.

1.10 Interpretation and conclusions

The Majorodam Project is underlain by mafic volcanic rocks and felsic intrusions, typical of greenstone belts in Guyana, Suriname and French Guiana, where substantial gold deposits have been found and developed, At the Project artisanal gold miners are recovering alluvial gold and past exploration has identified anomalous gold in bedrock upslope of the alluvial gold suggesting the possibility of discovering a bedrock source for the alluvial gold. The long history of artisanal mining combined with the limited work by several companies indicates that this area has exploration potential and deserves to be the subject of a comprehensive, multi-disciplinary, exploration program.

The Majorodam Project is an immature greenfields exploration project, as such is inherently high risk. It is possible that the recommended exploration project will yield weak, or no, indications of mineralization and the project will not warrant any follow up exploration.

1.11 Recommendations

A two-phase exploration program is recommended. Phase 1 is focused on bedrock and regolith mapping, combined with an extensive geochemical survey. The decision point to advance to phase 2 is the definition of a coherent geochemical anomaly which may represent a bedrock source. Phase 2 is a ground based geophysical survey to provide improved target definition for subsequent drilling if warranted. Estimated cost for both phase 1 and 2 is about C\$1,000,000.

2 INTRODUCTION AND TERMS OF REFERENCE

The following technical report has been prepared for Reunion Gold and Greenheart by Ross Sherlock, P.Geo. of Tantalus Geoscience Services Limited. The report has been compiled to include all information

May 20, 2024

relevant to the Project and is based on field visits and review of the work completed by Stargold and previous operators.

This report provides a geologic context, summarize historical work, and provide recommendations for future work. The author has discussed the Majorodam Project in detail with staff at Stargold, reviewed all data made available and completed a site visit in May 2024 over two days.

All reported information or used in this report are metric and the Currency is expressed in Canadian dollars ("C\$") unless otherwise stated.

```
1 troy ounce = 31.103 grams

1 ppm = 1 part per million

1 ppb = 1 part per billion

1 Mt = 1 million tonnes

g/t Au refers to grams gold per tonne

1 oz Au/t = 31.25 g/t gold

1 Moz Au means 1 million troy ounces gold

100 hectares = 1 square kilometers

1 tonne (metric) = 1000 kg

1 hectare = 10,000m² = 2.471 acres
```

3 RELIANCE ON OTHER EXPERTS

The author has relied on a legal opinion prepared by Sharmila Jadnanansing-Jairam, a Surinamese lawyer, as to the validity of the Majorodam mineral right and the rights of Reunion Gold to acquire a 100% interest in the Majorodam Project. The author expresses no opinion on these matters.

4 PROPERTY DESCRIPTION AND LOCATION

The Majorodam Project in the Sipaliwini and Brokopondo districts of Suriname, approximately 120 km south-southwest of Paramaribo, the capital of Suriname and 11 km west of Lake Brokopondo (Figure 1 and Figure 2). The centre of the property is at ~ N004° 48.5' - W055° 20.8'

Figure 1. Majorodam Location Map. The map shows the position of the Majorodam Project relative to South America and other significant projects in the region.

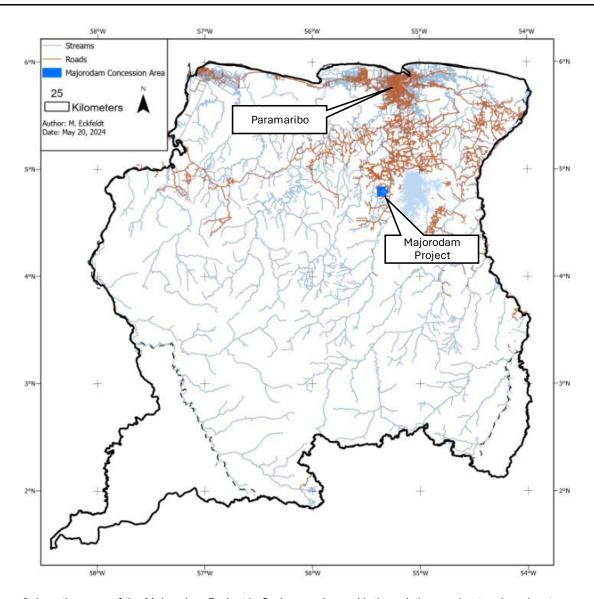


Figure 2. Location map of the Majorodam Project in Suriname along with the existing road network and waterways.

4.1 Mineral Right

The Project comprises a right of exploitation issued to Stargold was renewed by Ministerial Order GMD No. 223/23 on March 7, 2024 that is valid for a period of 10 years expiring on March 7, 2034. The right of exploitation has an area of 10,727 ha less the area covered by three small scale mining claims held by third parties totalling approximately 600 ha. (Figure 3). Property boundaries are not marked on the ground and are not required in Suriname. Table 1 lists the registered title corners.

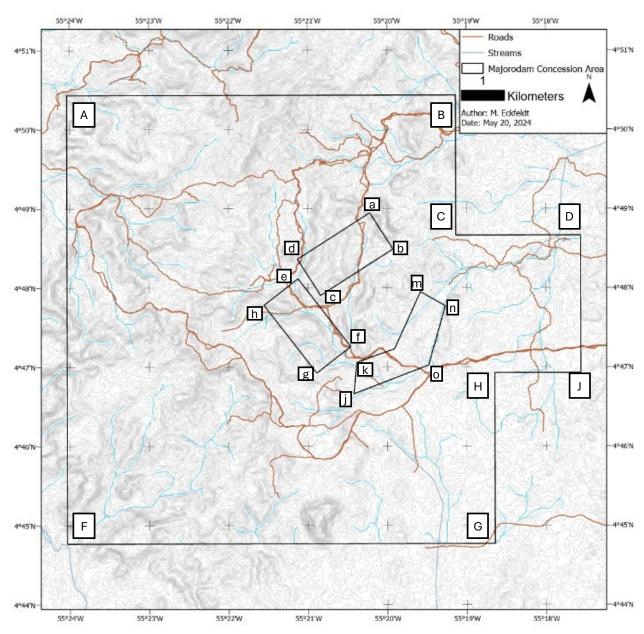


Figure 3. Map Majorodam Project. Letters correspond to corners referenced in Table 1 below. Note the three internal claims are not part of the Project.

Table 1. Latitude and Longitude of all Majorodam Right of Exploitation corners. The three internal claims are not part of the project. Coordinates are in WGS84 Degrees Decimal Minutes.

Corners	Latitude	Longitude
Α	4° 50′ 26.0"	55° 24′ 1.8"
В	4° 50′ 26.0"	55° 19′ 8"
С	4° 48′ 40"	55° 19′ 8"
D	4° 48′ 40"	55° 17′ 33.7"
J	4° 46′ 55.9"	55° 17′ 33.7"
Н	4° 46′ 55.9"	55° 18′ 38.7"
G	4° 44′ 46.5"	55° 18′ 38.7"
F	4° 44′ 46.5"	55° 24′ 1.8"

Corners	Latitude	Longitude
а	4°48′57"	55°20′13"
b	4°48′29.5"	55°19′55.5"
С	4°47′54.5"	55°20′50.2"
d	4°48′21.9"	55°21′7.7"
е	4°48′7.1"	55°21′7.3"
f	4°47′15.7"	55°20′27.5″
g	4°46′55.7″	55°20′53.2″
h	4°47′47″	55°21′33″
j	4°48′40"	55°20′25.1"
k	4°47′3.7"	55°20′23"
I	4°47′14"	55°19′54.4"
m	4°47′57.2"	55°19′34.8"
n	4°47′46.5"	55°19′16"
0	4°47′1.7"	55°19′28.7"

Pursuant to the Suriname Mining Law (the "Law"), a right of exploitation can be granted for period of up to 25 years and may be extended. The Majorodam Right of Exploitation is located on Crown land and , in accordance with the Law, the titleholder has an exclusive right (i) to mine, to beneficiate, process, transport and market the mined minerals, (ii) to continue exploration activities, (iii) to erect all works and buildings in or on the exploitation area to mine, (iv) to process the minerals, and (v) to use timber and building materials located within the exploitation area to construct and maintain the works and buildings. No third-party approval is required. The holder of a right of exploitation is obliged to submit quarterly and annual reports on its activities as detailed in the Decree. The titleholder is entitled to lease and transfer the Right of Exploitation, subject to government approval.

4.2 Option Agreement

On July 13, 2020, Reunion Gold had entered into a letter of intent with Stargold outlining the key terms and conditions under which Reunion Gold would get an option to acquire a 100% interest in the Majorodam Project in Suriname. The agreement was subject to Reunion Gold completing technical and legal due diligence and execution of a definitive agreement. Due to travel restrictions related to the Covid-19 pandemic, the due diligence was not completed, and the parties did not complete the transaction.

In early 2024, Reunion Gold re-initiated discussions with Stargold. On May 20, 2024, following the renewal of the right of exploitation, Reunion Gold entered into an option agreement with Stargold, the titleholder of May 20, 2024

the Majorodam right of exploitation. Pursuant to the option agreement, Stargold has granted to Reunion Gold the lease of the Majorodam Project Right of Exploitation entitling Reunion Gold to conduct exploration activities to ascertain the existence, location, quantity, quality or commercial value of mineral deposits on or with respect to the Project area during the option period. Reunion Gold was also granted the option to acquire 100% undivided right, title, and interest in the Project during the option period. The option is valid for an initial period of six (6) years and can be renewed for an additional period of six (6) years.

Pursuant to the option agreement, Reunion Gold will have to make the following annual payments to Stargold and incur the following minimum annual expenditures:

- 1. Within five (5) business days of the registration of the Majorodam Rights of Exploitation, US\$150,000.
- 2. On each of the 2nd, 3rd, 4th, and 5th anniversary of execution of the option agreement, US\$75,000.
- 3. On each of the 6th, 7th, 8th, 9th, 10th, and 11th anniversary, US\$50,000.
- 4. During each of the first and second year, minimum Project expenditures of US\$200,000.
- 5. During the third year, minimum Project expenditures of US\$500,000.
- 6. During the fourth and fifth year, minimum Project expenditures of US\$1,000,000.

In the event that Reunion Gold spends more than the minimum Project expenditures in any year, the surplus can be allocated to the following year's minimum spending requirement. The annual option payments and Project expenditures obligations will automatically cease when either Reunion Gold exercises the option or should Reunion decide to terminate the agreement.

If Reunion Gold discloses an indicated and measured mineral resource of 500,000 ounces of gold or more defined within the Project area, Reunion Gold will pay to Stargold an additional US\$150,000. In addition, Stargold will be entitled to receive a net smelter returns royalty of 0.75% from gold produced from the Project. The royalty rate payable to the government of Suriname is negotiated as part of a Mineral Agreement with the Government. Upon exercise of the Option and completion of a feasibility study and an environment and social impact assessment, Reunion will have to negotiate a Mineral Agreement with the Government of Suriname.

Reunion Gold may exercise the option at any time prior to the expiry of the option period by delivering to Stargold a Feasibility Study and paying Stargold US\$950,000 less any annual options payments already paid.

4.3 Transfer to Greenheart Gold

On April 22, 2024, Reunion Gold and G Mining Ventures Corp. announced having entered into a definitive agreement to combine the two companies, setting the stage for the creation of a leading intermediate gold producer (the "Transaction"). As part of the Transaction, it is anticipated that Reunion Gold and Greenheart will enter into a Contribution and Conveyance Agreement pursuant to which Reunion Gold will assign and transfer to Greenheart Reunion Gold's interests in the Majorodam Project and certain other mineral rights in Guyana as well as \$15 million in cash in consideration for the issuance by Greenheart to Reunion Gold of such number of fully paid and non-assessable Greenheart common shares as would result in the combine company holding, indirectly through Reunion Gold, approximately 19.9% of the outstanding Greenheart common shares immediately following completion of the Transaction and former shareholders of Reunion Gold owning approximately 80.1% of the outstanding shares of Greenheart. Pursuant to the Contribution and Conveyance Agreement, Greenheart will assume all obligations and liabilities under the option agreement between Reunion Gold and Stargold.

4.4 Other factors

To the author's knowledge there are no known environmental liabilities on the project. All permits are in place for the proposed exploration program. To the author's knowledge there are no other factors or risks that may affect access, title, or the right or ability to perform work on the property.

5 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE & PHYSIOGRAPHY

The Project is located approximately 120 km south of Paramaribo and is accessed primarily by the paved Afobakkaweg highway which runs roughly north south near the eastern boundary of the project. Access to the project from the highway and travel within the project is by 4-wheel drive vehicle or ATV. The project can be accessed year-round without interruption, although roads can deteriorate significantly during the rainy seasons.

The Project is located at about latitude N004° 48.5' and has a tropical humid climate with two dry seasons, one from approximately May through July and the other from November to January. However, the onset and duration of the rainy season will vary from year to year. The most pleasant times to visit Suriname are the dry seasons, the short dry season from mid-February to May and the long dry season from August to mid-November. Throughout the year, the average daily temperature varies between 21° and 34°C. Suriname lies outside the hurricane zone and the most extreme weather condition is the "sibibusi" (which means forest broom), a heavy rain shower. Tropical storms can enhance shower conditions along the coast.

The Project has no infrastructure outside of a rudimentary road network and artisanal miner's camp. The region's infrastructure is well developed with paved roads, communications, and general services in various small towns. Electricity generation is less than 40 km away at the Brokopondo Krachtcentrale hydroelectric power plant. The community of Brownsweg is 40 km away by paved road with limited services including fuel, accommodation, and food (Figure 2).

The capital city of Suriname, Paramaribo with a population of 240,000 people, is able to provide services, supplies, equipment and personnel to meet most if not all of the demands of an exploration program. There are several sample preparation labs in Paramaribo including Actlabs, ALS and FiLab. Only FiLab has assay equipment in country, however Actlabs and ALS ship (prepped) samples to their own assay labs in the region. Newmont is preparing samples at the Actlabs facilities in Paramaribo which are then shipped to Guyana for analysis.

The Project geomorphology is variable with a central ridge striking roughly northeast-southwest reaching elevations of approximately 350 m above sea level, Majorodam ridge. To the east of the central ridge, the property is characterized by broad alluvial flats at approximately 90 m elevation. The Project is covered by thick vegetation and trees typical of the tropical region (Figure 4).

Should exploration be successful, and a potentially economic deposit identified, the property has sufficient surface rights for a potential mining operation including tailing and waste rock storage, heap leach pads and processing plant sites.

Figure 4. Access through the Project trail network is with ATV within areas of dense vegetation. Minimal road clearing would be needed to provide access by 4-wheel drive vehicle.

6 HISTORY

Informal small-scale artisanal activity is reported to have continued for at least 19 years (2005 to present) in various locations within the Project area.

The first exploration in the area was by Golden Star in the 1990s who undertook a Bulk Leach Extractable Gold ("**BLEG**") stream sediment survey which highlighted anomalous drainages in the area. The data from this survey is only available as illustrations and the data has not been validated by the author.

Guardian Minerals, a private US based exploration company undertook activities in 2014-2015, collecting grab samples. No data is available from this program.

In 2015, IAMGOLD's exploration company in Suriname, SurEx, undertook two field programs on the concession. The first program was primarily an overview and planning trip. The second program involved rock-chip sampling, focusing on anomalous BLEG samples. The results of this exploration are not available.

Terraquest was contracted by Stargold in 2020 to fly an airborne magnetics survey. The survey used a King Air C90 to conduct the acquisition of data using high resolution aeromagnetic, horizontal gradiometer and radiometrics. Lines were spaced at 100 m. The survey was based out of Johan A. Pengel International

Airport, Suriname, and was completed between April 2020 and March 2020. Further details of the survey parameters are not available.

Southern Geoscience Consultants in Western Australia were contracted to plan, provide data quality control during acquisition and provide processing and interpretation of the data. The airborne magnetic survey provided support for the geologic interpretations, specifically the locations of geologic contacts and deformation zones and highlighted several areas which may be prospective for gold mineralization (15).

In 2020, Stargold conducted a limited stream sediment panning program where gold grains were counted in the panned concentrate, but geochemical analysis of the sample was not completed. In total 46 samples were panned. In the same year, Stargold collected 81 hand-auger samples in 32 holes which were spaced between 25 and 50 m apart. Sampling occurred along the crest of Majorodam ridge to a maximum depth of 3 m. The samples were collected on a single line, as an orientation survey, and 20 samples returned values over 100 ppb Au. The hand-auger samples were analyzed by Fire Assay with an AAS finish. An additional 120 hand-auger samples were collected to the south of Majorodam ridge, but assays could not be located, and these samples were not considered in the preparation of this report. To the authors knowledge no QA/QC standards were used during the sampling and analysis and no laboratory certificates are available for review. However, the author expects that the samples were collected and analyzed using the best practice available to Stargold at the time.

The exact sampling methodology has been determined through discussion with Stargold geologists, who were aware of the project but were not on site at the time, and through examination of field notes. Furthermore, the samples are so few in number they should be considered akin to a prospecting grab sample with a high level of uncertainty and may not be representative.

The 2020 hand-auger samples on Majorodam ridge were collected using "Dutch Augers" with extendable handles to reach depths of up to 3 m. The collected material from each hole was laid out in order from top to bottom. Material from each 1 m downhole was quartered and bagged in clear plastic sample bags as a separate sample and given a unique sample identifier. For each sample, the hole identifier, sample identifier, depth from and to, colour and a descriptive comment were recorded. All sampling and logging was done in meters. A UTM GPS coordinate using the WGS84 Zone 21N was recorded for the collar of each auger hole. Samples were transported by Stargold employees to their office in Paramaribo and then on to the MSA prep facility also in Paramaribo.

Through examination of the sample database and laboratory certificates, it does not appear any certified reference materials were inserted by Stargold or the contractor responsible for collecting the samples.

Three pulp duplicates were analyzed, a 5% insertion rate. There is an unsigned Excel certificate where the data matches the northern single auger line. However, it is unsigned and impossible to verify.

Samples preparation at MSA Labs included drying, crushing 1 kg to 2 mm, riffle splitting off 250 g for pulverization down to 85% passing 75 microns. Analysis was carried out on a 50 g split of the pulp using fire assay fusion with an AAS finish. It is unknown how samples were transported from the field to MSA Labs, and what part of the preparation and analysis was carried in Suriname or another MSA Lab. It is not known if the entire sample was crushed in 1 kg batches and re-homogenized or if a split was crushed, leaving considerable uncertainty in the sample preparation process.

At the request of Stargold, in December 2020, CSA Global carried out a review of all previous work and provided exploration recommendations for future work. Recommendations included further reconnaissance geochemistry and mapping to confirm the presence of through going and possibly mineralized structures, followed by drilling dependent on results.

In 2022, a small mapping program was carried out by Stargold. The program recorded regolith type including duricrust and ferricrete, as well as recording primary lithology where possible. This program highlighted the possible challenges in future geochemical surveys due to multiple generations of duricrust formation.

Many of the people who conducted the exploration work referenced above are experienced professionals who conducted their work using generally accepted industry best practice at the time. Some, but not all would have met the current requirements for a 'Qualified Person' at the time the work was carried out. The author has not been able to independently verify any of the historic exploration work as they are available mainly as summary reports and illustrations.

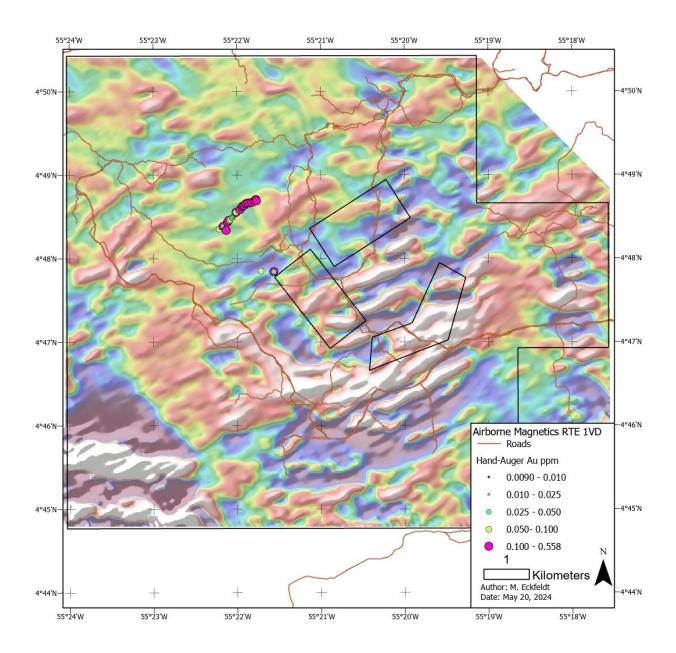


Figure 5. Airborne magnetics over concession with Stargold's hand-auger results.

7 GEOLOGY SETTING AND MINERALIZATION

The Project is situated within the Guiana Shield, at the northeastern edge of the Amazonian Craton. The Guiana Shield is over 900,000 km² and covers eastern Venezuela, Guyana, Suriname, French Guiana, the northern part of Brazil, and easternmost Colombia.

The Precambrian crystalline basement of Suriname consists of two high-grade metamorphic gneiss belts of Archean and Lower Proterozoic age, a likewise Lower Proterozoic volcanic-sedimentary greenstone belt, and a granitoid-volcanic complex in-between. The basement carries a few remnants of a once extensive cover of flat-lying Middle Proterozoic continental sediments (Roraima Formation) and is cut by abundant Middle Proterozoic and Permo-Triassic dolerite (diabase) dikes. Unconsolidated Cenozoic sediments form a fringe in the north (De Vletter, 1984). Figure 6 shows the regional geology of Suriname and the project location.

The low-grade metavolcanic and metasedimentary rocks in Suriname are known as the Marowijne Group, and occupy large areas in NE and E Suriname, and some smaller areas in the north and northwest. They form part of a more or less continuous, generally E-W to NW-SE striking greenstone belt along the northeastern margin of the Guiana Shield (Gibbs, 1980). The Marowijne Group is part of the Trans-Amazonian Province and comprises large Rhyacian (2.20-2.05 Ga) granite-greenstone belts, consisting of volcano-sedimentary rocks metamorphosed to greenschist facies, intrusive granitoids, and TTG (tonalite-trondhjemite-granodiorite) associated gneisses. The stratigraphic succession, from the bottom upwards is; (1) volcanic-sedimentary series, the Paramaka Formation composed of a basal sequence of mafic metavolcanics associated with metagabbros, followed by intermediate volcanics; intercalations of metagraywacke and phyllite increase from bottom to top; (2) volcaniclastic metagraywacke and phyllite, the Armina Formation, and (3) meta-arenite / conglomerate, the Rosebel Formation, which also contains some intercalated metavolcanics.

The types and proportions of the volcanic and sedimentary rocks in the Marowijne Group and elsewhere in the Guiana Shield are similar to those of the Canadian Archean, and they differ somewhat in these respects from the more mafic-ultramafic belts of the Australian, Indian and southern African Archean (Gibbs and Barron, 1993).

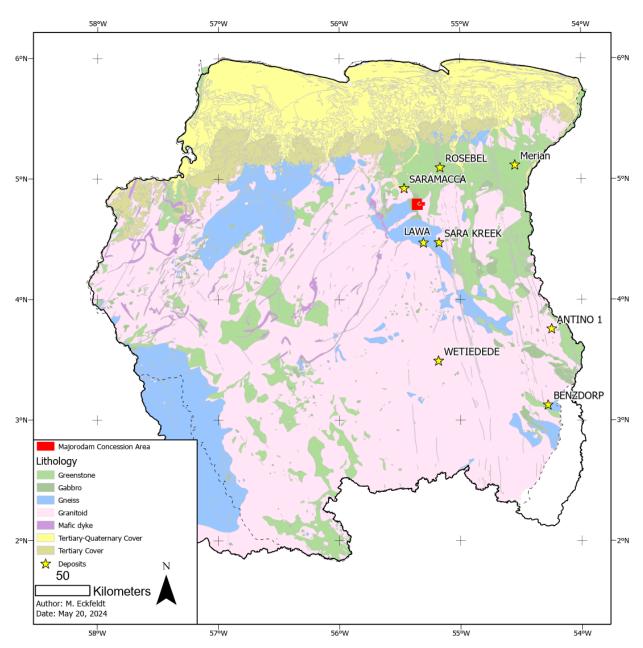


Figure 6. Geology of Suriname with the location of the Majorodam Project. Geology modified from the GMD.

The Project geology (Figure 7) is characterized by a large tonalite-quartz diorite intrusion (Figure 8) to the east and a series of mafic to ultramafic volcanic rocks, part of the Paramaca mafic volcanic suite, to the west (Figure 9). The panels of volcanic rocks trend NE-SW and are at greenschist facies metamorphic grade.

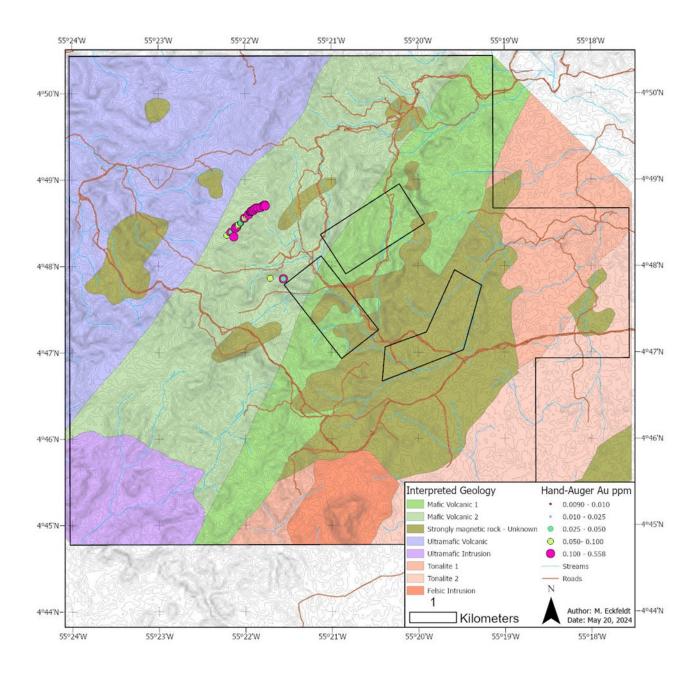


Figure 7. Majorodam Project Geology. Geology has been interpreted from the Airborne magnetics survey. The differences between mafic and tonalite 1 and 2 are based on changing fabric and magnetic properties. Field checks by the author have confirmed the presence of basalt and tonalite and the map is useful as a first effort to guide future work. Further mapping has been recommended in this report.

Figure 8. Quartz diorite which is interpreted to underly the eastern portion of the claim group. $N04^{\circ}$ 50.6490', $W055^{\circ}$ 16.9299'.

Figure 9. Mafic volcanic rocks which are interpreted to underlie the western portion of the project area. $N04^{\circ}$ 47.4550, $W055^{\circ}$ 20.4988.

Airborne magnetic data flown in 2020 indicate the contact between the volcanics and intrusion may mark a northeast-southwest oriented deformation zone. A subsidiary series of interpreted faults strike predominately ENE-WSW on the basis of geophysical interpretation.

Tropical weather in the project area is intense and complicated (Butt and Zeegers, 1992). As is the case for much of the tropical rain forest covered areas of South America, deep and overprinting weathering is characteristic of the geology of the Majorodam Project. Saprolite may extends to a depth of greater than 100 m. Supergene enrichment of gold and other minerals is also a characteristic of this type of terrain including the formation of laterite, often expressed as iron rich duricrust or true laterite (Figure 10 and Figure 11). In areas of topographic relief, a transported colluvium is overlying the saprolite. This material is variably consolidated and consists of unsorted clasts of iron oxide, duricrust, indurated saprolite and pisoliths floating in a beige clayey matrix (Figure 12 and Figure 13). Alluvial material, the focus of artisanal miners, occupies the stream beds. This material is unconsolidated sands to gravel, typically clean and well-sorted. It is important to be cognizant of these surficial processes when designing exploration programs and interpreting geochemical and other data. Regolith mapping, not yet completed at the Project, will assist ongoing exploration and is highly recommended.

Lithologies can be mapped through the weathering. Felsic intrusions will weather a pale color with more abundant kaolin development. Mafic volcanic rocks will weather dark red as they are relatively iron-rich and will readily develop a lateritic or duricrust zone. The bulk of the artisanal miner activity has been focused on alluvium, where gold has concentrated in the sand and gravel by fluvial processes. However, some small-scale mining is within the colluvium where gold, although not *in-situ*, has been transported some distance from its source (Figure 14).

Gold mineralization at Majorodam is found within alluvial workings in the low-lying valleys, however; hand auger samples have outlined mineralization higher up on the ridge in the limited work completed there. Future work aims to identify the source of gold along the ridge tops. It is possibly related to the underlying mafic volcanics / intrusive contacts and northeast-southwest oriented deformation zones inferred from airborne magnetics.

Figure 10. Duricrust outcroppings are located near or on top of the highest ridges. Duricrust bodies are usually fairly massive, and upwards of 5 m thick.

Figure 11. Saprolite, highly weathered rock typical of tropical weathering and representing *in-situ* lithologies. The above example is within the mottled zone.

Figure 12. Colluvium, transported material of highly weathered saprolite to lateritic fragments interpreted to have been gravity transported downslope an unknown distance. Note the preserved quartz vein fragments.

Figure 13. Section showing transported colluvium over saprolite development at the Saramacca deposit SRK (2017)

Figure 14. Artisanal mining activity focused in the colluvium, typically within the upper 10-50cm of the surficial material.

In-situ bedrock mineralization has not been identified on the project, however the geology, consisting of mafic volcanic rocks and felsic intrusions with structural complexities is prospective for orogenic style gold deposits as seen elsewhere in the Guiana Shield. The widespread occurrence of alluvial gold in active drainages suggests the presence of a bedrock source upslope from the alluvial workings. Similarly, the presence of gold in colluvium suggests that these workings are proximal to bedrock gold source as this material has limited transport distance. The proposed exploration program proposed is designed to identify the bedrock rock source of mineralization that may support a mining operation. This focus will be directed to identifying the source of the gold mineralization which has and is being mined by artisanal, alluvial and colluvium mining operations.

8 DEPOSIT TYPES

The property is prospective for orogenic gold deposits and will be explored as such. Majorodam is located 19 km south of the Saramacca gold mine, in similar host rock, where gold is principally hosted within a series of north-northwest trending structures ranging between 2 and 40 metres in width and traced over 2.2 kilometres along strike. In addition to the shear/fault-hosted mineralization found at Saramacca, gold endowment in the western portion of the Marowijne greenstone belt is expressed in various styles of mineralization. All gold occurrences are structurally controlled and are interpreted to be variants on the orogenic gold class of deposits.

The proposed exploration methods will include regolith and bedrock mapping to establish lithologies and structural trends and subsequent geochemical sampling will be planned to cover prospective host lithologies and cross prospective structures that would typically host orogenic deposits.

9 EXPLORATION

Neither Reunion Gold Corporation or Greenheart Gold Inc have conducted any exploration on the property, outside of geologic site visits in 2020 and 2024.

10 DRILLING

There has been no drilling on the property.

11 SAMPLE PREPARATION, ANALYSES AND SECURITY

No sampling has been conducted by Reunion Gold Corporation or Greenheart Gold Inc.

For the historic exploration data, particularly the auger sampling, it is the author's opinion that there is insufficient knowledge in the sampling procedures, the lab process and the QA/QC procedures to rely on the reported analytical results. These would need to be addressed and improved in any subsequent geochemical sampling program. However, given the small area covered by the samples, the results should be considered as an indication that material which has elevated gold content is present along this auger line. These are comparable to a prospecting grab sample, which suffer from inherent sampling bias but serve to indicate areas of interest rather than as an indication of size and tenor of mineralization.

12 DATA VERIFICATION

The author Ross Sherlock, Ph.D., P.Geo., visited the property from May 6th through May 7th 2024. Sites of alluvial mining were visited, and gold was observed in panned concentrates (Figure 16). As a result of dense vegetation, extensive cover and weathering, no mineralized outcrops were recognized and sampled.

As described above, previous exploration activities and results could not be verified, although the author believes, based on conversations with Stargold, that the data were collected using the best practice available to Stargold at the time.

May 20, 2024

It is the author's opinion, that the recognition of the alluvial gold workings and unverified data in previous exploration efforts supports the interpretation that a bedrock source for the alluvial gold may exist on the project area.

Figure 15. Several gold flakes in a panned concentrate

13 MINERAL PROCESSING AND METALLURGICAL TESTING

No metallurgical testing has been completed, nor is it warranted at this early exploration stage.

14 MINERAL RESOURCES ESTIMATE

There is no mineral resource estimate for the Project.

[Items 15 to 22 are not applicable to this report.]

23 ADJACENT PROPERTIES

Current tenure maps are challenging to get in Suriname. The public dataset is not up to date with several known licences absent. The mineral rights surrounding the Majorodam Project appearing in the public database are shown below in Figure 17.

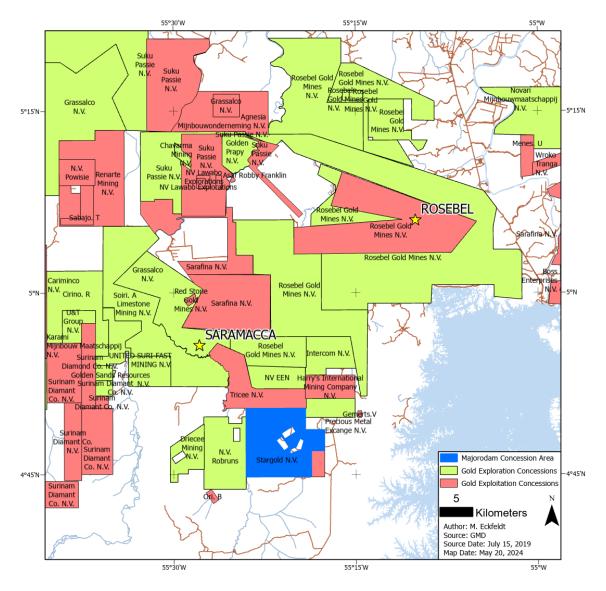


Figure 16. Mineral concessions surrounding the Majorodam Project. Note that concession data from the GMD does not appear to be kept up to date.

The mineral rights adjoining Majorodam have been or are still actively being explored and exploited by local small scale mining operations. Most of these operations are mining alluvial material, and rarely, *in-situ* deeply weathered bedrock material. There are no known publicly available reports on these properties.

The most significant properties closest to the Project are those of Zijin Rosebel Gold Mines N.V. (Figure 4) covering an area of approximately 101,000 ha divided between two exploitation licences and 9 exploration licences (IAMGOLD, 2022). Within this tenure are the Rosebel and Saramacca gold mines. In 2023, IAMGOLD sold their 95% interest in the Rosebel Gold Mines N.V. to Zijin Mining Group Co. Ltd. The Majorodam Project is located 6 km south of the Zijin Rosebel Gold Mines property boundary and approximately 10 km southeast of the Saramacca deposit. Although not contiguous with Majorodam, Rosebel and Saramacca are underlain by the same geological units and the style of mineralization are good analogies for what may be encountered at Majorodam.

Both Rosebel and Saramacca are hosted in felsic to mafic volcanics and sedimentary sequences. The volcano-sedimentary sequence is intercalated with felsic and mafic intrusions. Late diabase dykes crosscut the package. The Rosebel deposit is characterized by gold hosted in shear and tensional veins that are controlled by pre-existing fold structures such as extensional fractures, fold hinges, and along rock heterogeneities (IAMGOLD, 2022). Saramacca is hosted in multiple basalt flows with local cross-cutting felsic dykes. Mineralization at Saramacca is characterized by crack-seal veins in sub-parallel brittle-ductile fault zones, with the best mineralization associated with dolomite breccias and pyrite (SRK, 2017).

In September 2018, IAMGOLD reported the Saramacca deposit as containing 1.76 Moz Au at a grade of 2.0 g/t Au in Indicated Resources including Proven and Probable Reserves of 1.54 Moz Au at a grade of 1.8 g/t Au (IAMGOLD, 2018). Then from 2020 to 2021, Saramacca produced 168,000 oz Au at a grade of 0.94 g/t Au (IAMGOLD, 2022).

The author is unable to independently verify the above information and cautions that the mineralization described on the adjacent properties is not necessarily indicative of mineralization on the Majorodam project.

24 OTHER RELEVANT DATA AND INFORMATION

The author is unaware of any additional information or data that is relevant to the Project that would make the report more understandable and not misleading.

25 INTERPRETATION AND CONCLUSIONS

The Majorodam Project is underlain by mafic volcanic rocks and felsic intrusions, typical of greenstone belts in Guyana, Suriname and French Guiana, where substantial gold deposits have been found and developed, At the Project artisanal gold miners are recovering alluvial gold and past exploration has identified anomalous gold in bedrock upslope of the alluvial gold suggesting the possibility of discovering a bedrock

May 20, 2024

source for the alluvial gold. Despite the geologic similarity of this area to other gold endowed greenstone belts in the Guiana Shield, this area has seen minimal systematic exploration for primary gold deposits. The long history of artisanal mining combined with the limited work by several companies indicates that this area has exploration potential and deserves to be the subject of a comprehensive, multi-disciplinary, exploration program.

The Majorodam Project is an immature greenfields exploration project, as such is inherently high risk. It is the author's opinion that, based on the widespread alluvial gold mining and historic, unvalidated, exploration data, an initial exploration project to test for bedrock mineralization is warranted and has a reasonable prospect of success. However. It is possible that the recommended exploration project will yield weak, or no, indications of mineralization and the project will not warrant any follow up exploration.

26 RECOMMENDATIONS

Based on information gathered for this Technical Report, the site visit and discussion with Reunion Gold exploration group, the author makes the following recommendations for the first year of exploration on the Majorodam Project.

As detailed in Table 2, the recommended work program is designed to provide a geologic framework that can be used to define follow-up drill targets. The initial phase 1 of this work program is focused on geochemical sampling, geologic mapping and grab sampling, in addition to any required camp support. A decision point for phase 1 is definition of a coherent geochemical anomaly which may be indicative of a bedrock source of mineralization. If a coherent geochemical anomaly is recognized than phase 2 consists of a geophysical survey which will aid in the interpretation of the geochemical data and overall geologic framework. Phase 2 will provide an improved target definition which would guide and follow up diamond drilling as warranted.

Additional exploration work, including drilling, may be warranted subject to the delivery of successful results from Phases 1 and 2.

Table 2. Estimated Costs for Recommended Exploration Program

Recommended Majorodam exploration program

Phase 1		Cost (CAD\$)	
Topographic mapping, project support including camp construction and access earthworks	\$	200,000	
Geochemical sampling and analysis	\$	350,000	
Geological mapping, grab sampling and assaying, geology support & supervision	\$	250,000	
Phase 2			
Ground magnetics, geophysical surveys	\$	100,000	
Contingency (10%)	\$	90,000	
Total	\$	990,000	

27 REFERENCES

Butt, C.R.M. and Zeegers, H. (1992) Regolith exploration in tropical and subtropical terrains, Handbook of Exploration Geochemistry vol. 4 Elsevier, 17 pp

CSA Global Mining Industry Consultants (2019). *Memorandum : Reconnaissance Exploration Program – Tayaston Concessions*. Stargold internal memo.

De Vletter, Robert D., (ed), 1984, Contributions to the Geology of Suriname 8, Suriname Ministry of Natural Resources and Energy, 134 p.

GExplore Services Geologique et Geophysique (2022). Majorodam Project. Stargold Internal presentation.

Gibbs, A.K., 1980, Geology of the Barama-Mazaruni Supergroup of Guyana. Ph. D. Thesis, Harvard Univ., Cambridge, MA, 385 p.

GMD, 1977, *Geologic Map of Suriname 1:500,000*, Geologisch Mijnbouwkundige Dienst, Paramaribo, Suriname.

Gibbs, A.K. & C. N. Barron, 1993, The Geology of the Guiana Shield, Oxford University Press, NY, Collins, First Edition, 246 p.

IAMGOLD Corp. 2018, IAMGOLD reports 51% reserve increase at Rosebel Gold Mine driven by the declaration of reserves at Saramacca, Press release issued on September 23, 2018.

IAMGOLD Corp. 2022, *NI 43-101 Technical Report on the Rosebel Gold Mine, Suriname*. Issued on January 31, 2022, pp. 444.

SRK Consulting Canada Inc. 2017, *NI 43-101 Independent Technical Report for the Saramacca Gold Project, Suriname*, Issued on October 16, 2017, pp. 116.

Stargold N.V. (2022). *Majorodam Exploration November – December 2022*. Stargold internal report.

CERTIFICATE OF QUALIFIED PERSON

This certificate applies to the technical report entitled "NI 43-101 Technical Report on the Majorodam Gold Project Sipaliwini and Brokopondo districts of Suriname, South America (the "Technical Report") prepared for Reunion Gold Corporation and Greenheart Gold Inc. with an effective date of May 20, 2024.

I, Ross Sherlock, Ph.D., P.Geo., certify that:

- I am a principal of Tantalus Geoscience Services Ltd. a corporation having an office at 161 Jeanine Street, Sudbury Ontario, Canada, P3B 0E8. I provide geological consulting services through this entity.
- I graduated with an HBSc degree in geology from McMaster University in Ontario, Canada in 1986, a MSc in Geology from Lakehead University, Ontario, Canada in 1989 and a PhD in Geology from University of Waterloo, Ontario, Canada in 1993.
- I am a member of the Professional Geoscientists of Ontario (License Number: 2658) and Engineers and Geoscientists of BC (License Number: 23778).
- I have worked continuously as a geologist for 37 years since my graduation from McMaster University in 1986, with progressively increasing responsibilities. Below are some relevant experiences as they pertain to the Majorodam project. Most recently as project manager for Miramar Mining (2004-2008) I was a senior member of the team which discovered and delineated a resource base in excess of 10 Moz of gold in the Archean Hope Bay greenstone belt. As North American manager for Gold Fields (2008-2005), I managed exploration projects for orogenic gold deposits in the Abitibi greenstone belt of Canada and conducted business development activities for orogenic deposits globally, including in the Guiana Shield. As VP Geology for Kinross Gold (2015-2016), I was a technical lead exploring for orogenic gold deposits in North and South America as well as North and West Africa. I currently hold a research chair in Exploration Targeting at Laurentian University (2017-present) where I manage and conduct research on orogenic gold deposits mainly in the Superior Craton, North America.

- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined by NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I am the author of the Technical Report and I am responsible for all the sections of the Report.
- 7. I have personally visited the property on May 6 and 7, 2024.
- 8. To the best of my knowledge, information and belief, this technical report contains all the scientific and technical information that is required to be disclosed to make this technical report not misleading.
- 9. I have had no prior involvement with the property that is the subject of the technical report.
- 10. I am independent of Reunion Gold Corporation and Greenheart Gold Inc. in accordance with the tests in section 1.5 of NI 43-101.
- 11. I have read NI 43-101 and Form 43-101F, and the Technical Report has been prepared in compliance with that instrument and form.
- 12. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

Dated this June 10, 2024

"Ross Sherlock" (signed and sealed)

Ross Sherlock, Ph.D., P.Geo.